couchbasekit Documentation
Release 0.2.3-dev

Roy Enjoy

April 19, 2013

CONTENTS

1 Installation and Configuration 3
2 Quick Start 5
3 Model Document 9
3.1 __bucket_name__ (required) e e e e e e e e e 9
3.2 doc_type (required) e e e e e e e e e e e e 9
3.3 structure (required) L L e e e e e e e e e e e e e e 10
34 __key_field__(optional) e e e e e e 10
3.5 default_values (optional) 10
3.6 required_fields (optional) L e e e e e e e e e 10
3.7 Bonus: @register_view decoratort e e e e e e e e e e e e e e 10
4 Model Document Structure 13
4.1 Alowed TYPES . . . v v o o e 13
4.2 Document Relations o . i e e e e e e e e e e 13
43 CustomFields e e e e 13
4.4 List (Multi Value) Fields e e e e 14
4.5 Schemaless Fields e e e 14
5 API Documentation 17
5.1 couchbasekit.connection e e e e e e e e e e 17
5.2 couchbasekit.document L 18
5.3 couchbasekit.schema e 20
5.4 couchbasekit.fields e 21
5.5 couchbasekit.errors e e e e e e e e e e e 22
5.6 couchbasekit.middlewares e e e e e 23
5.7 couchbaseKit.VIEWSYNC o e e e e e 23
6 Indices and tables 25
Python Module Index 27

couchbasekit Documentation, Release 0.2.3-dev

couchbasekit is a wrapper around CouchBase Python driver for document validation and more. It was inspired by
MongoKit and was developed by the project coming soon?, which is also an open source project.

You can get detailed information about couchbase itself from http://www.couchbase.com/ and about its Python driver
form http://www.couchbase.com/develop/python/next.

Documentation: https://couchbasekit.readthedocs.org/en/latest/
Source code: https://github.com/kirpit/couchbasekit

Contents:

CONTENTS 1

http://namlook.github.com/mongokit/
http://www.couchbase.com/
http://www.couchbase.com/develop/python/next
https://couchbasekit.readthedocs.org/en/latest/
https://github.com/kirpit/couchbasekit

couchbasekit Documentation, Release 0.2.3-dev

2 CONTENTS

CHAPTER
ONE

INSTALLATION AND CONFIGURATION

It is strongly suggested that you should already know what is virtualenv, preferably virtualenvwrapper at this stage.
You can easily install couchbasekit via pip:

$ pip install couchbasekit

Note: couchbasekit has dependencies on:
* couchbase
* jsonpickle
* python-dateutil

e py-berypt (optional for couchbasekit.fields.PasswordField)

Then, the only configuration you have to do is couchbase authentication, somewhere at the beginning of your applica-
tion (such as settings.py if you’re using Django Web Framework for example):

from couchbasekit import Connection
Connection.auth (’theusername’, ’'p@ssword’)

or:

from couchbasekit import Connection
Connection.auth (
username='theusername’, password='p€ssword’,
server='localhost’, port='8091", # default already
)

That’s it. Now, you are ready for a crash course. See Quick Start.

http://www.virtualenv.org/
http://www.doughellmann.com/projects/virtualenvwrapper/
https://www.djangoproject.com/

couchbasekit Documentation, Release 0.2.3-dev

4 Chapter 1. Installation and Configuration

CHAPTER
TWO

QUICK START

Less talk, more code. Set your authentication details first:

from couchbasekit import Connection

you should do this somewhere beginning such as settings.py:
Connection.auth ('myusername’, ’'plssword’)

Then define your model document.
author.py:

import datetime

from couchbasekit import Document, register_view

from couchbasekit.fields import EmailField, ChoiceField
from example.samples.publisher import Publisher

from example.samples.book import Book

class Gender (ChoiceField) :
CHOICES = {
"M": ’"Male’,
"F’: '"Female’,

@Qregister_view ('’ dev_authors’)
class Author (Document) :

__bucket_name__ = ’'couchbasekit_samples’
__key_field__ = ’"slug’ # optional
doc_type = "author’

structure {

"slug’ : unicode,

"first_name’: unicode,
"last_name’ : unicode,
"gender’: Gender,
"email’: EmailField,
"publisher’: Publisher, # kind of foreign key
"books’: [Book], # 1-to-many, or many-to-many? some-to-some.. :)
"has_book’ : bool,
"age’: int,
"birthday’: datetime.date,
"created_at’: datetime.datetime,
}
default_values = { # optional

"has_book’: False,

couchbasekit Documentation, Release 0.2.3-dev

don’t worry about the timezone info!
it’s auto assigned as to UTC, so all you have to do is:

"created_at’: datetime.datetime.utcnow,
}
required_fields = (# optional

"slug’,

"first_name’,
"last_name’,
"email’,

Then use it as such;

>>> from example.samples.author import Author, Gender
>>> from couchbasekit.fields import EmailField
>>>
>>> douglas = Author()
>>> douglas.is_new_record
True
>>> try:
douglas.validate ()
except Author.StructureError as why:
print why

Key field "slug" is defined but not provided.
>>>
>>> douglas.slug = u’douglas_adams’
>>> try:
douglas.validate ()
except Author.StructureError as why:
print why

Required field for "first_name" is missing.
>>>
>>> isinstance (douglas, dict)
True
>>> douglas.update ({
"first_name’: u’Douglas’,
"last_name’: u’Adams’,
"email’ : EmailField(’dnalexample.com’),

})

>>> douglas.validate ()
True
>>> douglas.save ()
14379837794698
>>> douglas.cas_value # CAS value (version) of the couchbase document
14379837794698
>>> douglas.id
u’ douglas_adams’
>>> douglas.doc_id
u’author_douglas_adams’
>>> douglas.birthday is None
True
>>> douglas.non_exist_field
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "couchbasekit/document.py", line 68, in __ getattr_

6 Chapter 2. Quick Start

couchbasekit Documentation, Release 0.2.3-dev

return super (Document, self)._ _getattribute__ (item)
AttributeError: "Author’ object has no attribute ’'non_exist_field’
>>>

>>> dna = Author (’douglas_adams’)
>>> dna.is_new_record

False

>>> douglas==dna

True

>>> douglas.has_book = True

>>> douglas==dna

False

>>> # because we set (@register_view decorator, here are the CouchBase views:
>>> douglas.view ()

<couchbase.client.DesignDoc at 0x10d3ebel0>

>>> view = douglas.view(’by_fullname’)

>>> view

<couchbase.client.View at 0x10ce57410>

>>> view.results ({’key’: "Douglas Adams’})
<couchbase.client.ViewResultsIterator at 0x10d40dad0>

>>> # please refer to CouchBase views documentation for further usage..

>>> # and the bucket itself for advanced folks:

>>> douglas.bucket

<couchbase.client.Bucket at 0x10fb0c2d0>

>>> print [m for m in dir (douglas.bucket) if not m.startswith(’_")]

["add’, ’'append’, ’'cas’, ’'decr’, ’'delete’, ’design_docs’, ’'flush’, ’'gat’, ’'get’,
>>> # nice!

"getl’,

"incr’

’in:

couchbasekit Documentation, Release 0.2.3-dev

8 Chapter 2. Quick Start

CHAPTER
THREE

MODEL DOCUMENT

couchbasekit.document .Document is the main class you will be extending to define your own model docu-
ments. There are 3 attributes must be set within your model:

e _ bucket_name___
* doc_type
¢ structure

and the optional ones are:
e _ key_field__
¢ default_values

* required_fields

3.1 _ bucket_name__ (required)

The name of the couchbase bucket that the new records will be saved into and retrieved back from. This bucket should
be already created manually.

3.2 doc_type (required)

The type of the document that will be used in various places and usually lowercase of your model name but not checked
or forced.

The most important function of doc_type attribute is to create an auto-field named doc_type in every document.
That means you can use it in your JavaScript views to check which type of documents you want to emit:

function (doc, meta) {
if (doc.doc_type=='author’) {
emit (doc.slug, {first_name: doc.first_name, last_name: doc.last_name});
}
}

Another function of doc_type is to prefix your document id, if you’re using __key_field__ optional attribute
in order to create meaningful document IDs. Its format is; {doc_type}_{key_value.lower () }. If you don’t
choose touse __key_field__ in your models, doc_type will not be used to prefix your document IDs either.

couchbasekit Documentation, Release 0.2.3-dev

3.3 structure (required)

Structure definition dictionary is a wide topic, therefore explained in another section. See Model Document Structure.

3.4 _key field _ (optional)

Key field is kind of simulating primary key feature in relational databases that gives you ability to retrieve a single
document by its key value without doing a map-reduce in your buckets. It should be set to one of your root field in
your structure and it is your responsibility to check if a document exist with the same key value before over-writing
it.
Assuming the username fieldisthe __key_field__ in your structure:
userdata = {’username’: u’kirpit’, ’is_superuser’: True}
try:

user = User (userdata[’username’])
except User.DoesNotExist:

good, username 1is not taken

user = User (userdata)

user.save ()

else:
print ’Sorry, this username is already taken.’

If youdon’t providea___key_field__ inyour structure, first 12 characters of the hash key of your initial document
will be used without prefixing with doc_type attribute. Hashing is done via hashlib. shal.

3.5 default_values (optional)

As it explains itself, it sets the default values for specified fields before saving a document. Practically, you may assign
a static value, a custom field, a model document to relate or any callable that gives a value for it.

It does NOT set the document value, if it was already provided (which is not surprising, is it?).

Refer to Quick Start for an example.

3.6 required_fields (optional)

Another self explanatory attribute that checks if its items was provided at the time of validation. It should be a
tuple () (List () is ok too) and have all the names of the fields that are required.

Refer to Quick Start for an example.

3.7 Bonus: @register_view decorator

You may use this decorator to declare which design view your document instances will be using. This feature is used
by couchbasekit.document .Document .view () thatlets you to query your views:

from couchbasekit import Document, register_view

@register_view (' dev_books’)

10 Chapter 3. Model Document

http://docs.python.org/library/functions.html#tuple
http://docs.python.org/library/functions.html#list

couchbasekit Documentation, Release 0.2.3-dev

class Book (Document) :

__bucket_name__ = "'mybucket’
doc_type = "book’
structure = {

snip snip

}

Then it becomes easier to get your view queries. Please refer to CouchBase views documentation for advanced query
options:

>>> by_title = Book () .view('by_title’) .results ({
"startkey’: 'A’,
"endkey’: 'C’,
"stale’: ’"ok’,
"limit’: 1000,
1)
>>> for result in by_title.results:
print result[’id’], result[’key’], result[’value’]

An experimental tool couchbasekit.viewsync.ViewSync also uses this decorator to backup/restore your
server-side map/reduce functions.

Note: @register_view decorator automatically attaches ' full_set’: True parameter to your de-
velopment views by default, so you don’t have do it programmatically. = To disable it simply use as:
@register_view (’dev_books’, full_set=False). This feature doesn’t affect production views at all.

3.7. Bonus: @register_view decorator 11

couchbasekit Documentation, Release 0.2.3-dev

12 Chapter 3. Model Document

CHAPTER
FOUR

MODEL DOCUMENT STRUCTURE

Structure definition dictionary is the most important part of your model document. They are similar to table fields
in relational SQL systems in a way. You simply need to define them as key-value that corresponds to field_name:
field_type. Keep reading...

4.1 Allowed Types

To begin, you may simply define those field types as standard Python types, see
couchbasekit.schema.ALLOWED_TYPES for the list of them.

4.2 Document Relations

You can define a field type as another model document (or even recursively) within your structure. This simulates
kind of foreign key scenario in the relational systems but you must know that every related document will be fetched
separately from couchbase server as the nature of the non-relational systems.

The good news is, these relations are lazy-loaded, fetched on-demand and couchbasekit caches them during the object’s
life time.

>>> lonely_galaxy = Publisher(’lonely galaxy’)

>>> dna = Author (’douglas_adams’)

>>> dna.publisher = lonely_galaxy

>>> dna.save ()

4535519295771

>>> dna = Author (’douglas_adams’) # retrieve the same doc

>>> dna.get ('publisher’)

u’publisher_lonely_galaxy’

>>> dna.publisher # or dna.load()

{u’doc_type’: u’publisher’, u’created_at’: u’2012-11-18 16:24:16.784474+00:00", ’'slug’:
>>> dna.get ('publisher’) # no more raw, already cached

{u’doc_type’: u’publisher’, u’created_at’: u’2012-11-18 16:24:16.784474+00:00", ’'slug’:
>>>

4.3 Custom Fields

With couchbasekit, of course you can have your specific field types and a few of them may be al-
ready defined in couchbasekit.fields. Creating your own custom field is quite easy, please refer to
couchbasekit.fields.CustomField.

13

u’ lonely_gal:

u’ lonely_gal:

couchbasekit Documentation, Release 0.2.3-dev

As an example, the password fields are salted randomly and encrypted on the fly, thus cannot be decrypted back:

>>> from couchbasekit.fields import PasswordField

>>> raw = 123456’

>>> PasswordField (raw)
7$2a$12$1nshsN7Nt8e3.dPdlZcA7udnesu2sg52nZ16CXINOETZwc2UYCGYS’
>>> PasswordField (raw)
"$2a$125UyLdw0QwHIMONipuyQ3Mg.NA4YteHZ8NDwXFpaJP .x19ZnU jmxvila’
>>> hashed = PasswordField(raw)

>>> hashed.value
7$2a$1251r490Tn0zEaMYTf.dfjBNoe0I729E52218xTILbwfqZyOXeabXzZUky’
>>> hashed.check_password(’ incorrect’)

False

>>> hashed.check_password(’ 123456")

True

>>>

4.4 List (Multi Value) Fields

You can also define a 1ist () of values. For example:

class Book (Document) :

__bucket_name___ = ’couchbasekit_samples’
doc_type = "book’
structure = {

"title’: unicode,
"published_at’: datetime.date,
"pictures’: list,

"tags’: [unicode],

}

Note that if you are sure what type of elements a List Field will have, you should explicitly specify it as an instance with
a single value in it (i.e. " tags’: [unicode]). Otherwise just let it be 1ist then it can have any combination
of values in it.

However, be careful if you define your field as a plain 1ist (such as 'pictures’: 1list). You will always
get a list of basic types (e.g. unicode, int, float, bool etc..) as couchbasekit doesn’t know if they’re any of
the advanced ones (e.g. custom fields, document relations, datetime.date, etc..). For example, if you save a document
relation in them, you will get its couchbasekit .document .Document .doc_1id () as unicode but not the
document itself, which actually would be useful for performance tuning.

4.5 Schemaless Fields

Some of your model documents may need complicated structure, such as pre-defined item types of a dictionary, deeply
nested dictionary or totally schemaless sub-structures.

Warning: One downside of such free dictionary models is that you can’t use attribute access (a.k.a. dot notation),
so you have to use dictionary-like item assignment and the same rule applies for retrieving of your data.

First and easiest example would be a total schemaless model document:

class FreeModel (Document) :
__bucket_name__ = ’couchbasekit_samples’
doc_type = "free’

14 Chapter 4. Model Document Structure

http://docs.python.org/library/functions.html#list

couchbasekit Documentation, Release 0.2.3-dev

structure = {}

free = FreeModel ()

that does NOT work because ’somefield’ wasn’t defined in the structure
free.somefield = ’"some value’

but that will work:

free[’ somefield’] = ’"some value’

and those also will work as the Document class 1is a dictionary itself!

free = FreeModel (somefield=’some value’, listfield=[’list’, 'of’, ’"items’])

or that’s ok too:
data = {’somefield’: ’'some value’, ’'listfield’: [’1list’, ’'of’, ’"items’]}
free = FreeModel (data)

If you want a semi schemaless structure on a specific field that means you know it will be dictionary and what type for

its keys and values will be, you may define only types for its key-value pair:

class User (Document) :

__bucket_name__ = ’'couchbasekit_samples’
doc_type = "user’
structure = {

"username’ : unicode,
"email’: EmailField,
"password’ : PasswordField,
"logins’: {
datetime: ip
datetime.datetime: unicode,
}I

Finally, deeply nested dictionary fields:

class Book (Document) :

__bucket_name___ = ’couchbasekit_samples’
doc_type = "book’
structure = {

"title’ : unicode,
"published_at’: datetime.date,
"pictures’: list,
"tags’: [unicode],
"category’: {
u’History’: bool,
u’Sci-Fiction’: bool,
u’ Cooking’: {
u’ Turkish’: bool,
u’Italian’: bool,
u’Fast Food’: bool,
u’Dessert’: bool,

Note: Please note that again; dot notation does not work for deeply nested dictionaries either. So you can’t check or

set of a book’s Dessert category by dot notation:

>>> book = Book (’ad45556b3bad’)

>>> book.category.Cooking.Dessert # wrong!

>>> pbook.category.Cooking[u’Dessert’] # wrong!
>>> book.category is None

4.5. Schemaless Fields

15

couchbasekit Documentation, Release 0.2.3-dev

True

>>> book.category[’Cooking’][’Dessert’] = False # wrong, as ’category’ is not assigned yet
>>> book.category = {u’Cooking’: {u’Dessert’: True}} # correct

>>> book.category[’Cooking’] [’Dessert’] = True # it was created, so it’s ok now
>>> book[’category’] [’ Cooking’][’'Dessert’] = True # correct, same as above

>>> book.category[’History’] # wrong, you’ll get a KeyError

>>> 'History’ in book.category # that’s the way

False

>>> book.category[u’History’] = True # correct, only assigns the u’History’

>>> book[’'category’] = {u’History’: True} # correct, but overwrites the ’'category’
>>>

16 Chapter 4. Model Document Structure

CHAPTER
FIVE

API DOCUMENTATION

5.1 couchbasekit.connection

website http://github.com/kirpit/couchbasekit
copyright Copyright 2013, Roy Enjoy <kirpit at gmail.com>, see AUTHORS.txt.
license MIT, see LICENSE.txt for details.

class couchbasekit.connection.Connection
This is the singleton pattern for handling couchbase connections application-wide.

Simply set your authentication credentials at the beginning of your application (such as in “settings.py”’) by:

>>> from couchbasekit import Connection
>>> Connection.auth (’theusername’, ’'plssword’)

or

>>> Connection.auth (
username='theusername’, password=’'p@ssword’,
server='localhost’, port='8091’, # default already

Note: This class is not intended to create instances, so don’t try to do:

>>> conn = Connection() # wrong

or you will get a Runt imeWarning.

classmethod auth (username, password, server="localhost’, port=‘8091’)
Sets the couchbase connection credentials, globally.

Parameters
* username (s77) — bucket username (or “Administrator” for working with multi buckets).

» password (str) — bucket password (or Administrator’s password for working with multi
buckets).

¢ server (sfr) — couchbase server to connect, defaults to “localhost”.
* port (str) — couchbase server port, defaults to “8091”.

Returns None

17

http://github.com/kirpit/couchbasekit
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

couchbasekit Documentation, Release 0.2.3-dev

classmethod bucket (bucket_name)
Gives the bucket from couchbase server.

Parameters bucket_name (s7r) — Bucket name to fetch.
Returns couchbase driver’s Bucket object.

Return type couchbase.client.Bucket

Raises RuntimeError If the credentials wasn’t set.

classmethod close ()
Closes the current connection, which would be useful to ensure that no orphan couchbase processes are
left. Use it in, for example one of your Django middleware’s process_response ().

Note: The class will open a new connection if a bucket is requested even though its connection was closed
already.

Returns None

5.2 couchbasekit.document

website http://github.com/kirpit/couchbasekit
copyright Copyright 2013, Roy Enjoy <kirpit at gmail.com>, see AUTHORS.txt.
license MIT, see LICENSE.txt for details.

class couchbasekit .document .Document (key_or_map=None, get_lock=False, **kwargs)
Couchbase document to be inherited by user-defined model documents that handles everything from validation
to comparison with the help of couchbasekit.schema.SchemaDocument parent class.

Parameters

* key_or_map (basestring or dict) — Either the document id to be fetched or dictionary to
initialize the first values of a new document.

* get_lock (bool) — True, if the document wanted to be locked for other processes, defaults to
False.

* kwargs — key=value arguments to be passed to the dictionary.
Raises couchbasekit.errors.StructureErrororcouchbasekit.errors.DoesNotExist

exception DoesNotExist (doc)
Raised when a model class passed with an id to be fetched, but not found within couchbase.

You don’t have to specifically import this error to check if does not exist because your model document
has just the same error for convenience. For example:

try:

mrnobody = Author (' someone_doesnt_exist’)
except Author.DoesNotExist:

some useful code here

pass

Document .bucket
Returns the couchbase Bucket object for this instance, object property.

Returns See: couchbase.client.Bucket.

18 Chapter 5. APl Documentation

http://docs.python.org/library/functions.html#str
http://github.com/kirpit/couchbasekit
http://docs.python.org/library/functions.html#bool

couchbasekit Documentation, Release 0.2.3-dev

Return type couchbase.client.Bucket

Document .delete ()
Deletes the current document explicitly with CAS value.

Returns Response from CouchbaseClient.
Return type unicode
Raises couchbasekit.errors.DoesNotExist or couchbase.exception.MemcachedError

Document .doc_id
Returns the couchbase document’s id, object property.

Returns The document id (that is created from doc_type and __key_field__ value, or
auto-hashed document id at first saving).

Return type unicode

Document .id
Returns the document’s key field value (sort of primary key if you defined it in your model, which is
optional), object property.

Returns The document key if __key_field__ was defined, or None.
Return type unicode or None

Document . save (expiration=0)
Saves the current instance after validating it.

Parameters expiration (in7) — Expiration in seconds for the document to be removed by couch-
base server, defaults to 0 - will never expire.

Returns couchbase document CAS value
Return type int

Raises couchbasekit.errors.StructureError, See
couchbasekit.schema.SchemaDocument .validate ().

Document . touch (expiration)
Updates the current document’s expiration value.

Parameters expiration (in7) — Expiration in seconds for the document to be removed by couch-
base server, defaults to 0 - will never expire.

Returns Response from CouchbaseClient.
Return type unicode
Raises couchbasekit.errors.DoesNotExist orcouchbase.exception.MemcachedError

Document .view (view_name=None)
Returns a couchbase view (or design document view with no view_name provided) if
couchbasekit.viewsync.register_view () decorator was applied to model class.

Parameters view_name (str) — If provided returns the asked couchbase view object or design
document otherwise.

Returns couchbase design document, couchbase view or None

Return type couchbase.client.Viewor couchbase.client.DesignDoc or None

5.2. couchbasekit.document 19

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#str

couchbasekit Documentation, Release 0.2.3-dev

5.3 couchbasekit.schema

website http://github.com/kirpit/couchbasekit
copyright Copyright 2013, Roy Enjoy <kirpit at gmail.com>, see AUTHORS.txt.
license MIT, see LICENSE.txt for details.

class couchbasekit.schema.SchemaDocument (seqg=None, **kwargs)

Schema document class that handles validations and restoring raw couchbase documents into Python values as
defined in model documents.

Under normal circumstances, you don’t use or inherit this class at all, because it is only being used by
couchbasekit.document .Document class.

Parameters seq (dic) — Document data to store at initialization, defaults to None.

Raises couchbasekit.errors.StructureError if the minimum structure requirements
wasn’t satisfied.

exception StructureError (key=None, exp=None, given=None, msg="")
Raised when things go wrong about your model class structure or instance values. For example, you pass
an int value to some field that should be st r or some required field wasn’t provided etc..

SchemaDocument . load ()
Helper function to pre-load all the raw document values into Python ones, custom types and/or other
document relations as they are defined in model document.

This is only useful when you need the instance to convert all its raw values into Python types, custom
fields and/or other document relations before sending that object to somewhere else. For example, sending
a User document to your framework’s 1login (request, user) function.

If your code is the only one accessing its values such as; user.posts, you don’t have to . load () itas
they’re auto-converted and cached on-demand.

Returns the instance itself (a.k.a. chaining) so you can do:

>>> book = Book (’hhg2g’) .load()

Returns The Document instance itself on which was called from.

SchemaDocument .validate ()
Validates the document object with current values, always called within
couchbasekit.document .Document .save () method.

Returns Always True, or raises couchbasekit.errors.StructureError exception.

Raises couchbasekit.errors.StructureError if any validation problem occurs.

couchbasekit.schema.ALLOWED_ TYPES

This is the constant that will be used to check your model structure definitions:

ALLOWED_TYPES = (

bool,

int,

long,
float,
unicode,
basestring,
list,

dict,

20

Chapter 5. APl Documentation

http://github.com/kirpit/couchbasekit
http://docs.python.org/library/stdtypes.html#dict

couchbasekit Documentation, Release 0.2.3-dev

datetime.datetime,
datetime.date,
datetime.time,

)

However, it doesn’t include str type intentionally because couchbase will keep your values in unicode and you
will have trouble re-saving a st r field right after you fetch it. If you really have to pass a st r value while you first
creating a document record, you can simply define your field as basestring and both types will be accepted at the
time of validation.

Besides these ones, you can also use couchbasekit.document.Document for document relations and
couchbasekit.fields.CustomField subclasses for special field types. See couchbasekit.fields.

5.4 couchbasekit.fields

website http://github.com/kirpit/couchbasekit
copyright Copyright 2013, Roy Enjoy <kirpit at gmail.com>, see AUTHORS.txt.
license MIT, see LICENSE.txt for details.

couchbasekit.fields.CustomField

couchbasekit.fields.ChoiceField

couchbasekit.fields.EmailField

couchbasekit.fields.PasswordField

class couchbasekit.fields.ChoiceField (choice)
The custom field to be used for multi choice options such as gender, static category list etc. This class can’t be
used directly that has to be extended by your choice list class. Thankfully, it’s just easy:

class Gender (ChoiceField) :
CHOICES = {
M’ : '"Male’,
"F’': ’'Female’,

}

and all you have to do is to pass the current value to create your choice object:

>>> choice = Gender ('F’)
>>> choice.value

IFI

>>> choice.text

"Female’

Parameters choice (basestring) — The choice value.
text
Returns the text of the current choice, object property.
Return type unicode

class couchbasekit.fields.CustomField
The abstract custom field to be extended by all other field classes.

5.4. couchbasekit.fields 21

http://github.com/kirpit/couchbasekit
http://docs.python.org/library/functions.html#basestring

couchbasekit Documentation, Release 0.2.3-dev

Note: You can also create your own custom field types by implementing this class. All you have to do is to
assign your final (that is calculated and ready to be saved) value to the va 1 ue property. Please note that it should
also accept unicode raw values, which are fetched and returned from couchbase server. See PasswordField
source code as an example.

Please contribute back if you create a generic and useful custom field.

value
Property to be used when saving a custom field into couchbasekit .document .Document instance.

Returns The value to be saved for the field within couchbasekit .document .Document
instances.

Return type mixed

class couchbasekit.fields.EmailField (email)
The custom field to be used for email addresses and intended to validate them as well.

Parameters email (basestring) — Email address to be saved.

static is_valid (email)
Email address validation method.

Parameters email (basestring) — Email address to be saved.
Returns True if email address is correct, False otherwise.
Return type bool

class couchbasekit.fields.PasswordField (password)
The custom field to be used for password types.

It encrypts the raw passwords on-the-fly and depends on py-bcrypt library for such encryption.
Parameters password (unicode) — Raw or encrypted password value.
Raises ImportError if py-bcrypt was not found.

check_password (raw_password)
Validates the given raw password against the intance’s encrypted one.

Parameters raw_password (unicode) — Raw password to be checked against.
Returns True if comparison was successful, False otherwise.

Return type bool

Raises ImportError if py-berypt was not found.

static get_bcrypt ()
Returns the py-bcrypt library for internal usage.

Returns py-bcrypt package.

Raises ImportError if py-berypt was not found.

5.5 couchbasekit.errors

website http://github.com/kirpit/couchbasekit
copyright Copyright 2013, Roy Enjoy <kirpit ar gmail.com>, see AUTHORS.txt.
license MIT, see LICENSE.txt for details.

22 Chapter 5. APl Documentation

http://docs.python.org/library/functions.html#basestring
http://docs.python.org/library/functions.html#basestring
http://docs.python.org/library/functions.html#unicode
http://docs.python.org/library/functions.html#unicode
http://github.com/kirpit/couchbasekit

couchbasekit Documentation, Release 0.2.3-dev

exception couchbasekit.errors.CouchbasekitException
Just to have some base exception class.

exception couchbasekit.errors.DoesNotExist (doc)
Raised when a model class passed with an id to be fetched, but not found within couchbase.

You don’t have to specifically import this error to check if does not exist because your model document has just
the same error for convenience. For example:

try:

mrnobody = Author (' someone_doesnt_exist’)
except Author.DoesNotExist:

some useful code here

pass

exception couchbasekit.errors.StructureError (key=None, exp=None, given=None, msg="")
Raised when things go wrong about your model class structure or instance values. For example, you pass an
int value to some field that should be st r or some required field wasn’t provided etc..

5.6 couchbasekit.middlewares

website http://github.com/kirpit/couchbasekit
copyright Copyright 2013, Roy Enjoy <kirpit ar gmail.com>, see AUTHORS.txt.
license MIT, see LICENSE.txt for details.

class couchbasekit.middlewares.CouchbasekitMiddleware
A helper that can be used in Django Middlewares to close couchbase connection gracefully in order not leave
any orphan subprocess behind.

5.7 couchbasekit.viewsync

website http://github.com/kirpit/couchbasekit
copyright Copyright 2013, Roy Enjoy <kirpit at gmail.com>, see AUTHORS.txt.
license MIT, see LICENSE.txt for details.

class couchbasekit.viewsync.ViewSync
This is an experimental helper to download, upload and synchronize your couchbase views (both map and reduce
JavaScript functions) in an organized way.

Unfortunately, it’s quite impossible to synchronize these views since couchbase doesn’t provide any information
about when a specific view was created and modified. So we can’t know if previously downloaded js file or the
current one at couchbase server should be replaced..

This class also works in a singleton pattern so all its methods are @classmethod that you don’t need to create
an instance at all.

In order to use this tool, you have to set VIEW_PATH attribute of the class to the directory wherever you want
to keep downloaded JavaScript files. It is better to keep that directory under version controlled folder, as they
can also become your view backups:

ViewSync.VIEW_PATH = ' /path/to/your/js/view/backups’

5.6. couchbasekit.middlewares 23

http://github.com/kirpit/couchbasekit
http://github.com/kirpit/couchbasekit

couchbasekit Documentation, Release 0.2.3-dev

classmethod download ()

Downloads all the views from server for the registered model documents into the defined VIEW_PATHS

directory.

This method removes previous views directory if exist.

classmethod sync ()
Not implemented yet.

classmethod upload ()

Uploads all the local views from VIEW_PATHS directory to CouchBase server

This method over-writes all the server-side views with the same named ones coming from VIEW_PATHS

folder.

couchbasekit.viewsync.register_ view (design_doc, full_set=True)

Model document decorator to register its design document view:

Qregister_view ('’ dev_books’)

class Book (Document) :
__bucket_name__ =
doc_type = "book’
structure = {
snip snip

Parameters

"mybucket’

* design_doc (basestring) — The name of the design document.

* full_set (bool) — Attach full_set param to development views.

24

Chapter 5. APl Documentation

http://docs.python.org/library/functions.html#basestring
http://docs.python.org/library/functions.html#bool

CHAPTER
SIX

* genindex
* modindex

INDICES AND TABLES

25

couchbasekit Documentation, Release 0.2.3-dev

26 Chapter 6. Indices and tables

C

couchbasekit.
.document, 18
.errors, 22

couchbasekit
couchbasekit

couchbasekit.
couchbasekit.
couchbasekit.
couchbasekit.

connection, 17

fields, 21
middlewares, 23
schema, 19
viewsync, 23

PYTHON MODULE INDEX

27

	Installation and Configuration
	Quick Start
	Model Document
	__bucket_name__ (required)
	doc_type (required)
	structure (required)
	__key_field__ (optional)
	default_values (optional)
	required_fields (optional)
	Bonus: @register_view decorator

	Model Document Structure
	Allowed Types
	Document Relations
	Custom Fields
	List (Multi Value) Fields
	Schemaless Fields

	API Documentation
	couchbasekit.connection
	couchbasekit.document
	couchbasekit.schema
	couchbasekit.fields
	couchbasekit.errors
	couchbasekit.middlewares
	couchbasekit.viewsync

	Indices and tables
	Python Module Index

